Making Sense of Indoor Spaces Using Semantic Web Mining and Situated Robot Perception

نویسندگان

  • Jay Young
  • Valerio Basile
  • Markus Suchi
  • Lars Kunze
  • Nick Hawes
  • Markus Vincze
  • Barbara Caputo
چکیده

Intelligent Autonomous Robots deployed in human environments must have understanding of the wide range of possible semantic identities associated with the spaces they inhabit – kitchens, living rooms, bathrooms, offices, garages, etc. We believe robots should learn this information through their own exploration and situated perception in order to uncover and exploit structure in their environments – structure that may not be apparent to human engineers, or that may emerge over time during a deployment. In this work, we combine semantic webmining and situated robot perception to develop a system capable of assigning semantic categories to regions of space. This is accomplished by looking at web-mined relationships between room categories and objects identified by a Convolutional Neural Network trained on 1000 categories. Evaluated on real-world data, we show that our system exhibits several conceptual and technical advantages over similar systems, and uncovers semantic structure in the environment overlooked by ground-truth annotators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Lifelong Object Learning by Integrating Situated Robot Perception and Semantic Web Mining

Autonomous robots that are to assist humans in their daily lives are required, among other things, to recognize and understand the meaning of task-related objects. However, given an open-ended set of tasks, the set of everyday objects that robots will encounter during their lifetime is not foreseeable. That is, robots have to learn and extend their knowledge about previously unknown objects on-...

متن کامل

designing and implementing a 3D indoor navigation web application

​During the recent years, the need arises for indoor navigation systems for guidance of a client in natural hazards and fire, due to the fact that human settlements have been complicating. This research paper aims to design and implement a visual indoor navigation web application. The designed system processes CityGML data model automatically and then, extracts semantic, topologic and geometric...

متن کامل

Semantic Factors: Students’ Sense of Belonging to Outdoor School Spaces

School is an environment which brings out students’ hidden talents. Paying attention to an appropriate context and environment has a huge impact on achieving this goal. The purpose of this study was to determine and evaluate semantic factors provided by experts influence students’ sense of belonging at high school students in terms of Iranian experts. To this end, firstly data were collected th...

متن کامل

Development of a Combined System Based on Data Mining and Semantic Web for the Diagnosis of Autism

Introduction: Autism is a nervous system disorder, and since there is no direct diagnosis for it, data mining can help diagnose the disease. Ontology as a backbone of the semantic web, a knowledge database with shareability and reusability, can be a confirmation of the correctness of disease diagnosis systems. This study aimed to provide a system for diagnosing autistic children with a combinat...

متن کامل

Development of a Combined System Based on Data Mining and Semantic Web for the Diagnosis of Autism

Introduction: Autism is a nervous system disorder, and since there is no direct diagnosis for it, data mining can help diagnose the disease. Ontology as a backbone of the semantic web, a knowledge database with shareability and reusability, can be a confirmation of the correctness of disease diagnosis systems. This study aimed to provide a system for diagnosing autistic children with a combinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017